منابع مشابه
Indicated coloring of graphs
We study a graph coloring game in which two players collectively color the vertices of a graph in the following way. In each round the first player (Ann) selects a vertex, and then the second player (Ben) colors it properly, using a fixed set of colors. The goal of Ann is to achieve a proper coloring of the whole graph, while Ben is trying to prevent realization of this project. The smallest nu...
متن کاملEdge-coloring Vertex-weightings of Graphs
Let $G=(V(G),E(G))$ be a simple, finite and undirected graph of order $n$. A $k$-vertex weightings of a graph $G$ is a mapping $w: V(G) to {1, ldots, k}$. A $k$-vertex weighting induces an edge labeling $f_w: E(G) to N$ such that $f_w(uv)=w(u)+w(v)$. Such a labeling is called an {it edge-coloring k-vertex weightings} if $f_{w}(e)not= f_{w}(echr(chr(chr('39')39chr('39'))39chr(chr('39')39chr('39'...
متن کامل-λ coloring of graphs and Conjecture Δ ^ 2
For a given graph G, the square of G, denoted by G2, is a graph with the vertex set V(G) such that two vertices are adjacent if and only if the distance of these vertices in G is at most two. A graph G is called squared if there exists some graph H such that G= H2. A function f:V(G) {0,1,2…, k} is called a coloring of G if for every pair of vertices x,yV(G) with d(x,y)=1 we have |f(x)-f(y)|2 an...
متن کاملClassical Coloring of Graphs
Despite the variety of graph coloring models discussed in published papers of a theoretical nature, the classical model remains one of the most significant and widely applied in practice. The NP-hardness of the coloring problem gives rise to the necessity of using suboptimal methods in a wide range of practical applications. Moreover, the large range of problems solved by classical coloring, as...
متن کاملAcyclic Coloring of Graphs
A vertex coloring of a graph G is called acyclic if no two adjacent vertices have the same color and there is no two-colored cycle in G. The acyclic chromatic number of G , denoted by A ( G ) , is the least number of colors in an acyclic coloring of G. We show that if G has maximum degree d, then A ( G ) = O(d413) as d+m. This settles a problem of Erdos who conjectured, in 1976, that A ( G ) = ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete Mathematics
سال: 2012
ISSN: 0012-365X
DOI: 10.1016/j.disc.2012.07.001